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Abstract - We consider modeling of the unknown with Green’s priors in statistical inverse methods.
In statistical inverse theory, the direct theory is often formulated in infinite-dimensional space while the
Bayesian inversion is carried out in a finite-dimensional space. This raises the question, what happens
when dimensionality of the solution space is increased. We study certain function-valued priors and show
that their discretized versions satisfy conditions guaranteeing the convergence of corresponding posterior
distributions. With Green’s priors one can choose the strength of the corresponding regularization sys-
tematically according to the discretization and a priori information of the unknown. Then the solution is
essentially independent of the discretization and one gets a clear statistical interpretation for the strength
of the regularization. Green’s priors are derived from Hilbert space-valued stochastic processes. We con-
sider conditions for the convergence of the solution and point out possible sources of non-convergence.
We also demonstrate the power of the method numerically.

1. INTRODUCTION

In statistical inverse theory, the objective is to find out some unknown function, for example velocity or
conductivity distribution [2, 6], on the basis of noisy indirect measurements. The problem is formally
described with the equation

y=AX +¢, (1)

where X is the unknown function, A is a known linear mapping and the noise € is typically a white noise
process. We assume that y is a finite-dimensional vector, i.e. the measurements are spatially fixed. The
measurement is then a sample of random vector y. If A=1(¢) is large (or A~! does not even exist), the
solution candidate given by A~!(y) is useless. According to Hadamard [3], such problems are called ill-
posed. For bounded error terms ¢, linear ill-posed problems may be solved with classical regularization
methods [12]. In case of Gaussian noise, the error term € may have very large values with positive
probability. Hence classical regularization methods are not applicable and statistical solution methods
are used instead (4, 8, 11]. In statistical inverse methods, we refer to the problem as unstable and within
the classical framework as ill-posed.

The main point in Tikhonov’s regularization method is applying additional information on X in order
to compensate the ill-posedness of the problem. In statistical inverse theory, additional information on
X is added in the form of probability distributions. For computational reasons, the unknown function
is usually discretized. The problem is then to to find the posterior distribution of a finite-dimensional
random vector X,,, given a sample of

y=AnXm+e, (2)

where X,, is a finite-dimensional random vector and A,, is a finite-dimensional approximation of the
linear operator A. We will assume that X,, and e are statistically independent random vectors and € has
a Gaussian distribution N (0, C;).

According to the statistical inverse theory, the solution of eqn. (2) is the following conditional prob-
ability density function

D(Xmly) o< Dp:(Xm)D(y|Xm), (3)

where Dy, (X) is the prior density of X,, formed on the basis of some additional information on X,,.
By the proportionality sign we mean that the corresponding functions differ only by the normalization
constant. By eqn (2), the conditional density D(y|X,») can be written explicitly and it is proportional
to eXp("’%(y - Ame)TOe—l(y = AmXm)).-
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The discretization of the unknown function raises the question, how does a change of the dimension-
ality affect the form of the posterior distribution. In other words, can we discretize the unknown in such
a way that the appearance of the posterior distribution is somehow independent of the discretization of
the unknown. In this paper, our intention is to formulate a Gaussian prior density

Dpr(Xm) o< exp (- %ch,;lxm) (4)
in such a way that we can guarantee convergence of the posterior mean (maximum a posteriori estimate)
X = Cn AL (A Cr AT + Co) ™y (5)

and of the posterior covariance
Ky = Cr — O AL (A,,Cn AT + C)71 A, G (6)

As prior distributions, we shall choose Green’s priors. In short, a Green’s prior is a mean zero Gaussian
measure with covariance operator C having some Green function as its kernel. That is, the kernel ¢(z, y)
satisfies the equation

P(D)c(z,y) = 6(z ~y)

in distributional sense. Here the partial differential operator P(D) is a strongly elliptic operator of the
form
P(D)= Y (-1)lagDD?, (7)
le|=(8]|=m

where aog = agq are constants for all multi-indecis o and 8. We shall allow also some fractional order
differential operators as a natural generalization of eqn. (7).

With Green’s priors, we consider only constant coefficient case. Taking anp as variables would
require specific prior information on the behavior of the unknown. Consider for example Laplacian
A =", D;6;;D; on a smooth domain with zero boundary condition for ¢(z,y). Multiplying the kernel
¢(x,y) with a constant c¢? means multiplying the coefficients &;; by the factor ¢~2. In acoustic problems
this corresponds to altering the sound speed from one to ¢. In this case, replacing the coefficients d;; with
functions a;;(x) would roughly mean specifying how fast our unknown changes from place to place.

2. THEORY
In order to get a unified setting for the Bayesian inversion of the infinite-dimensional linear problem in
eqn. (1), we assume that the unknown X is a Gaussian distribution-valued random variable [5]. Here the
word distribution is used in the sense of Schwartz to represent a continuous linear form on the test function
space D(U) which is the space of all compactly supported smooth functions on an open set U C R"™.
The benefit is that then X has a characteristic function £ defined by eqns. L(¢) = E(exp(iX(¢))),
where ¢ € D(U). According to Minlos theorem [10], £ determines a Gaussian probability measure on
the distribution space when D'(U) is equipped with the Borel sigma algebra with respect to the weak*
topology. Therefore, Gaussian generalized random variables have Gaussian probability distributions on
D’'(U) and also the Bayesian inversion can be carried out [8]. We take A as a measurable linear mapping,
that extends some known linear operator acting on L2(U). For simplicity, we assume that A4,, = A.

The class of all distribution-valued random variables is quite large. Obviously, it contains all Gaussian
Hilbert space-valued stochastic processes that operate also on D(U).

Let W be a Gaussian white noise process on U = (0,1) so that it has the characteristic function
L(P) = exp(—%“qﬁ”%zw)) for all ¢ € D(U). Let T, be the fractional integral operator

T f(z) = 1—%&7 /O "o — ) f(s)ds, ze U ®)

where o > % and f € L*({U). When « = 0, the operator T}, is the identity. Following [1, 7], we define an
extension

TaW =Y W(¢;)Tad; 9)
J=1

for any orthonormal basis {¢;} of L?(U). This gives a new Hilbert space-valued stochastic process Z.
Furthermore, we multiply the process by o and obtain a new process X = ¢Z.
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The covariance operator Cx for the process X is the integral operator T, T with kernel ¢, (2, s). For
example, with white noise process co(t,s) = (¢t — s), and with Brownian motion ¢ (¢,s) = min(t, s),
and with the integrated Brownian motion ¢z (¢, s) = 1 max(t, s) min(¢, s)? — 1/6 min(¢, s). These Hilbert
space-valued processes are Green’s priors. For integer values of o, the kernel ¢,, is the Green function for
the differential operator (—1)*D?® with zero boundary value at the origin. For fractional orders of «,
the kernel is the Green function for the fractional order differential operator [ TQI _« defined by analytic
continuation with respect to « [9]. They describe the unknown as an element of the corresponding

reproducing kernel Hilbert space
Hx = {h e D'(U) : sup {(h, @) : (Cx,) < 1,6 & D(U)} < oo}. (10)

In this case, the elements of Hx are simply images of L?(U) functions under the fractional integral
operator Ty, i.e. Hx = To(L?(U)) [1].

Let us define a discretization of X by considering dyadic divisions of the interval U, i.e. U is divided
into 2™ consecutive subintervals of equal length h,,. We take

X = o T™WW (11)

where T\™ is an O(hm) convergent discretization of the fractional integral operator given by the fractional
Euler method [9]. The covariance operator Cp, = T{m (To(,m))T has the kernel

gm min(%,5)
m a— +7 - -«
M (t,s) = o2 Z plo-1 Z (-1) +a( ik ) ( ik )}Ih(t)ﬂfj(s), (12)
k=1

ty=1

where Iy, denotes the indicator function of the set V', i.e. Iy = 1 on V and is zero elsewhere. These
finite-dimensional operators are naturally identified with matrices. The action of this part of the prior
is visualized when we consider the Cholesky factorization of its inverse matrix keeping the connection
to the Tikhonov regularization method in mind. For integer values of «, the rows of these matrices are

difference operators of order o having v/ hi; 2* as multiplier.

Theorem 1 Let A : L?(U) — R™ be a continuous linear operator. Let X,, = oT™W, X = oTuW and
¢ a Gaussian zero mean random vector on R™ statistically independent of X. Then the posterior measure
for the problem y = AX,, + € converges weakly to the posterior measure for the problem y = AX +e.
Proof — The posterior measures converge weakly on D’(U) if the characteristic functions

/ exp(i{u, ¢))dpum(u) = exp (z(Xm,ff)) - %(Kmqs) ¢>) (13)
")

converge for every test function ¢. The posterior mean for the continuous problem is Cx A'(ACx A’ +
C:)'y and the corresponding posterior covariance operator is Cx — Cx A/(ACx A’ + C.)"tACx [8].
Similarly as in the resolvent equation,

Cr A (ACL A"+ C) 1 —Cx A (ACx A"+ C.)™!
= (Cpp— CYA(ACx A + C) 1+ CLA'(ACL A" + C)TA(Cx — C) A (ACK A + C.)™ L. (14)

Note that Cp, A'(AC,, A’ + C.)7' A are uniformly bounded on L2. This converges since (C,, — Cx)A'z
converges in L? for all fixed vectors z.

In the case of the covariance operators, we study convergence of K,,¢ in L?(U) for every test function
$. By the above arguments, these functions converge on L%(U), even though the convergence can not
be seen in the zero order case & = 0 from the behavior of the single elements of posterior covariance
matrices. This is due to the fact that the kernel contains Dirac’s delta function. O

By considering, e.g. approximations of Gamma function, it can be shown that values c[(lm)(t, s) con-
verge to c(t, s). This implies that posterior means converge pointwisely for & > 1/2. Furthermore, if
the kernel of A is smooth, then the posterior means converge pointwisely also for & = 0 and the order of
convergence is O(hq,).

3. GREEN’S PRIORS IN TWO DIMENSIONS
We suggest the following two dimensional generalization. Let W; and Wy be independent white noise
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processes on the rectangular U2. We generalize operator T}, defined in eqn. (8) by integrating only with
respect to one coordinate axis. For ¢ = 1,2, we denote

Toof(2) = f%a—) / " (@ — 9" f(2)das, (15)

where o > % and f € L2(U?). Similarly as before, let Z; = JTa,iwi for i == 1,2. The covariance operator
of Z; has a kernel

cz,(z,y) = 6(x2 — y2)cal®1, Y1), (16)
cz,(%,y) = 6(z1 — y1)ca(z2, Y2)-

Taking the distributional derivatives for integer values of o shows that
o} (=1)*D}%ez,(z,y) = 6(z — y) (17)

fori=1,2.
Let p be a Gaussian measure with mean zero and covariance

C =Cgz, ~Cz(Cz +Cz)"'Cz, (18)

so that it is obtained as a posterior measure for Z; given the measurement 0 = Z; — Z3. Covariance
operators are invertible on their reproducing kernel Hilbert spaces, so

(C’Zl + CZZ)(CZI + CZz)_l =1

on Hz, 1 7,. This leads to the equation Cz,(Cz, + Cz,)™' =1 — Cz,(Cz, + Cz,)~'. Inserting this into
eqn. (18) gives
C=0Cz(Cz + CZZ)MICZH = Cz,(Cz, + CZz)_ICZw (19)

where the last equality follows from the fact that the transpose of the covariance operator is the covariance
operator itself. Taking now the distributional derivatives and using eqn. (17) gives that

o A (=1)*(DF* + D3")e(z,y) = 6(z — ). (20)

Hence ¢{z, y) is the Green function for the scaled Laplacian with zero boundary values along the coordinate
axis.
‘We define the discretized counterpart for C by replacing the kernel ¢z, with

-
1
eqem (@) = 0%y s—Tr, (), ()l (w4, 1) (21)
=1

and denote such discretized covariance operator by C,,,. Here z} is the vector z without the ith component.
As in the previous section, the convergence of (C,, ¢, 1) to (C¢,v) for all test functions ¢ and ¥ may be
reduced to the convergence of C' ) on fixed functions. The discretization of delta function as well as

the the discretization of T, ; converges in norm for any L2-function. Hence the discretized prior measures
N(0,Cy,) converge weakly to N(0, C) and also the posterior measures for the statistical inverse problem
(2) converge.

When « = 1, C,, is the inverse for the discrete Laplacian. The connection is seen from the equation

22111
() (D1 llom) + D)o (z,9) = 3 Tl (D, (1), (22
j=1"m

where A;(hy,) is the square of the difference operator in direction ¢ with stepsize h,, and Q); are squares
originating from the dyadic divisions of coordinate axis. Taking 1/h.,Iq, as basis functions would lead to
a matrix equation. Solving the matrix eqn. (22) directly provides another way of producing discretized
prior covariance matrices related to a given Green function.

4. NUMERICAL EXAMPLE
Our intention is now to demonstrate the power of the method developed in the previous sections. For
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measurements

y(t;) + ¢

Figure 1: Time-series to be differentiated.

brevity, we shall concentrate here only to the one-dimensional case, even though the theory can be applied
to two-dimensional problems. This is due to the complexity of the two-dimensional cases. They need a
separate treatment in order to get a unified approach.

In this paper we shall consider one-dimensional time-series problem - differentiation of the following
function on the basis of noisy measurements.

exp (4 - ET%S-T)) t € (0,5)

~ ] t=7 te(7,8]
Y t) = 3 23
) —t+9 te (8,9) 23)
0 otherwise.

The first part of the function is the so-called mollifier function and the second part is a triangle function.
The function is parametrized in such a way that the values of its derivative lie approximately between
[~1,1]. In this way we can get a clear and systematic interpretation for the maximum a posteriori
estimate and for the posterior covariance. With this kind of parametrization we can also avoid unnecessary
problems during the computations.

We consider differentiation of the function in the eqn. (23) by transforming differential equation
y'(t) = X (t) to the first kind Fredholm integral equation corrupted by white noise. The equation can be
written as

y(t) = / H(t - )X ()dt +<(t). (24)

H(t — t') is the Heaviside step function. The eqn. (24) above is easily discretized and the discretized
version can be described with matrix notation as

y=AX+e¢e, e~ N(0,C,). (25)

Let us call the vector y as measurements. For the numerical simulation the measurements shall be
spatially sampled with ¢; = 104/30,¢ = 1,2,...,30. We shall add some Gaussian white noise with distri-
bution N(0,0.12) to measurements. Measurements are visualized in figure 1.

It gives a good intuition if we give the a priori information given in eqn. (12) as synthetic measure-
ments. Let us consider the case when « = 1, i.e. Brownian motion. The prior information can then be
given by the following equations

X1 = 50, 50'\'N(0,0’2h)
Xi - Xi—l = é:i, é:fz ~ N(0,0’zh),
where h is the discretization step. With matrix notation the a priori information can be written as
0=A,X+E £E~N(OZ). (26)

In this case, the matrix Ay, is a lower triangular matrix having values only at the diagonal and at the
first band. By combining the two matrix eqns (25) and (26) we obtain a large matrix equation. Solution
of the matrix eqn. X, i.e. maximum a posteriori estimate, can be computed as a generalized least-squares
problem.

X = (ATCITA + AL AL TTATC Yy (27)
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For Brownian motion « = 1, the covariance matrix X, turns out to be an identity matrix multiplied by
the discretization and stochastic factors Xp, = o2hI. With the classical Tikhonov notation in mind we
can change the latter eqn. (27) to the form

-1

X = (ATO;lA + %AE,APJ ATcly. (28)
Thus we see that the classical regularization parameter corresponds to o?h. But with the discretization
method developed in the section 2, we get a natural explanation of the regularization parameter. The
first term of the parameter defines certain statistical properties of the stochastic process. More precisely,
o is the constant multiplier for the process which means that E(X;X,) = o?min(¢,s). The second term
takes care of that the solution is essentially independent of the discretization, so that the we have a clear
convergence of the posterior distributions.

Similarly, for the integral function of the Brownian motion i.e. « = 2 the synthetic measurements
are Xop1 — 2X; + Xi1 = &, & ~ N(0,0%h3). The boundary conditions are X; ~ N(0,0%h3) and
2X3 — X1 ~ N(0,02h3). For the white noise process o = 0 one gets X; = &;, & ~ N(0,0%/h). Thus one
can see that the covariance Xy, is always an identity matrix multiplied by two factors — the discretization
factor and the stochastic factor.

Thus, when « is an integer the regularization matrices turn out to be standard difference matrices.
When « is a fractional number, the regularization matrices are fractional difference matrices. They can
be written as

i—1
S (- < . ) Xiik=6&, &~N (o,a2h2(a—%>) . (29)
k=0

We have computed numerical examples with different regularization strengths (02 = 0.01, 1, 100)
and with different orders of regularization (« = 0, 1, 1.35, 2). The visualizations of the maximum a
posteriori estimates are shown in figures 2 and 3. The number of the unknowns are 10, 20, 50 and 80.
We have also computed posterior covariance for the first order prior @ = 1 and 02 = 1. Visualizations
are shown in figure 4.

It can be easily seen that in nearly all the cases — except in the zero order case — the appearance of
the estimate seems to be the same when the discretization changes. However, in the zero order case, the
situation is a bit more difficult. The kernel function i.e. the Heaviside step function is not a continuous
function and thus one cannot see the convergence with pointwise values. Instead, we should consider the
convergence for every test function. In the zero order case the estimate consists of “stairs”, because the
basis functions turn out be of the similar form. There are naturally 30 stairs, because we have got 30
measurements. This is due to the fact that the dimensionality of the solution space cannot be greater
than the dimensionality of the measurement space.

It is very difficult to see whether the solution is of the same form for very sparse grids (i.e. 10 un-
knowns) as for dense grids. Thus one should pose the question, how many unknowns should one have in
order to get clear convergence.

It is practically impossible to visualize Gaussian probability distribution with more than two variables.
It is common to visualize the distribution by displaying maximum a posteriori estimate with some kind of
error boundaries for pointwise values defined by the diagonal values of the posterior covariance. However
this approach demands that the matrix is “sufficiently” diagonally dominant. In our case the posterior
covariance matrix is not diagonally dominant. Thus one should visualize the whole posterior covariance
and maximum a posteriori estimate.

The visualizations of the posterior covariance in the case o = 1, 02 = 1 are displayed as images in
figure 4. They seem to have a clear, even though a slow convergence. If one looks at pointwise values,
it is apparent that with sparse grids — 10, 20 unknowns — one cannot see any convergence. For denser
grids — 50, 80 unknowns — the convergence can be clearly seen. Thus one should note that the maximum
a posteriori estimate shows clear convergence when there are 20 unknowns. For the posterior covariance
one needs at least 50 or more unknowns in order to get a proper convergence. A more detailed study of
the posterior covariances shall be carried out in later papers.

As a conclusion, one should choose the number of the unknowns large enough and check continuity
conditions. One should also take care of that the regularization strength is suitable for the problem by
modeling the unknown properly. One should also ask, how many measurements must one have in order
to get proper results.
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Figure 2: Center-point estimates with different regularization strengths for zero and first order priors.



Lol

a=2,0%=100

100

o =1.35, 02

4
3 ¢
. 0.. W..lu -4

009 9og Qoo ©oQ

1 |
SATYRATISP
. .
. {
. : s,

oo Qo9 oo Qoo
| |
w.\rﬂ“m\rﬁhwﬁ

10

10

1

o =1.35, 2

o0Q 909 908 9O
|
SATYBALIOD
{

. Y
"‘-..-“"..
. .

00000000000
h ol ~— ol ™ — —_— p—

1 i ]
OAT)RATIOP

10

10

T

. e
—
b .
<
=)
I :
5 . H vy
b . s
21 . .- -n
| . H
3 . oo ---
. P SR : O
oo Qo9 coo coo
| I
SATYEATISP
. )
—
™t .
< .
< .
il .
o~ .
S . w
57 .
o) .
~— .
Il .
3 .
coco 000 OOO 000
— ~ el

i _ _
SATYRATISP

x

Figure 3: Center-point estimates with different regularization strengths for fractional order 1.35 prior

and second order prior.



Lol

Number of unknowns is 10 Number of unknowns is 20

2 4 6 8 10 2 4 6 8 10

Number of unknowns is 50 Number of unknowns is 80

10

2 4 6 8 10 2 4 6 8 10

Figure 4: Posterior covariances for the first order prior, i.e. Brownian motion with regularization strength
2
o¢ =1
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5. CONCLUSIONS
We have established a discretization method in statistical inverse theory in such a way that the posterior
distribution is essentially independent of the discretization. We have shown convergence of the posterior
distributions and demonstrated the power of the method numerically in the one-dimensional case.
Compared with the classical regularization, the regularization parameter has a clear statistical and
systematical interpretation. Moreover, the prior information can be viewed as characteristics of the used
Hilbert-space valued stochastic process. This allows for every applicant a systematic way of modeling the
unknown.
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